Chapter 7 Laplace Transform Methods

Introduction

Recall in Chapter 3; we talked about the method of solving the mass-spring-dashpot system

$$
m x^{\prime \prime}+c x^{\prime}+k x=F(t)
$$

In practice, the forcing term $F(t)$ has discontinuities. In this case, the Laplace transform method is a prefered method to solve Eq (1).

The Laplace transformation \mathcal{L} can be viewed as an analogy of the differentiation operator D :

Figure: Transformation of a function: \mathcal{L} in analogy with \mathbf{D}

Figure. Using the Laplace transform to solve an initial value problem
7.1 Laplace Transforms and Inverse Transforms

Definition The Laplace Transform
Given a function $f(t)$ defined for all $t \geq 0$, the Laplace transform of f is the function F defined as follows:

$$
F(s)=\mathcal{L}\{f(t)\}=\int_{0}^{\infty} e^{-s t} f(t) d t
$$

for all values of s for which the improper integral converges.

Recall that an improper integral over an infinite interval is defined as a limit of integrals over bounded intervals:

$$
\int_{a}^{\infty} g(t) d t=\lim _{b \rightarrow \infty} \int_{a}^{b} g(t) d t
$$

If the limit (2) exists, then we say that the improper integral converges; otherwise, it diverges or fails to exist.

Example 1 Apply the definition in (2) to find the Laplace transform of the given function.

$$
f(t)=e^{3 t+1}
$$

Ans: By the def. above, the Laplace transform of $f(t)$ is

$$
\begin{aligned}
F(s) & =L\{f(t)\}=\int_{0}^{\infty} e^{-s t} \cdot e^{3 t+1} d t \\
& =\int_{0}^{\infty} e^{-s t} \cdot e^{3 t} \cdot e d t \\
& =e \int_{0}^{\infty} e^{-(s-3) t} d t
\end{aligned}
$$

We compute $\int e^{-(s-3) t} d t$
Let $u=-(s-3) t$, then $d u=(3-s) d t$
Thus $d t=\frac{1}{3-s} d u$
So

$$
\begin{aligned}
& \int e^{-(s-3) t} d t=\int e^{u} \frac{1}{3-s} d u=\frac{1}{3-s} \int e^{u} d u \\
= & \frac{1}{3-s} e^{u}=\frac{1}{3-5} e^{-(s-3) t}
\end{aligned}
$$

Then

$$
\begin{aligned}
F(s) & =\frac{e}{3-s}\left[e^{-(s-3) t}\right]_{0}^{\infty} \\
& =\frac{e}{3-s} \lim _{b \rightarrow \infty}\left[e^{-(s-3) b}-e^{-(s-3) \cdot 0}\right]
\end{aligned}
$$

If $s-3>0$, then $e^{-(s-3) b} \rightarrow 0$ as $b \rightarrow \infty$
So $F(s)=\frac{e}{3-s}(0-1)=\frac{e}{s-3}$ for $s>3$
Note $\alpha\left\{e^{a t}\right\}=\frac{1}{s-a} \quad(s>a)$

$$
\begin{aligned}
\alpha\left\{e^{3 t+1}\right\} & =\alpha\left\{e^{3 t} \cdot e\right\}=e \alpha\left\{e^{3 t}\right\} \\
& =e \cdot \frac{1}{s-3} \quad(s>3)
\end{aligned}
$$

Reading Material: Gamma function $\Gamma(x)$ and $\mathcal{L}\left\{t^{a}\right\}$
The Laplace transform $\mathcal{L}\left\{t^{a}\right\}$ of a power function is most conveniently expressed in terms of the gamma function $\Gamma(x)$, which is defined for $x>0$ by the formula

$$
\Gamma(x)=\int_{0}^{\infty} e^{-t} t^{x-1} d t
$$

- $\Gamma(1)=1$
- $\Gamma(x+1)=x \Gamma(x)$
- $\Gamma(n+1)=n$!

Example 2 Apply the definition in (2) to find the Laplace transform of the given function.

$$
f(t)=t^{a}, \quad \text { where } a \text { real and } a>-1
$$

Ans: By def.

$$
\mathcal{L}\left\{t^{a}\right\}=\int_{0}^{\infty} e^{-s t} t^{a} d t
$$

Let $u=s t$, then $t=\frac{u}{s}$

$$
d u=s d t \text {, then } d t=\frac{d u}{s}
$$

substitute these into the integral, we have

$$
\begin{aligned}
& \mathcal{L}\left\{t^{a}\right\}=\int_{0}^{\infty} e^{-s t} t^{a} d t=\int_{0}^{\infty} e^{-u}\left(\frac{u}{s}\right)^{a} \cdot \frac{d u}{s}=\frac{1}{S^{a+1}} \int_{0}^{\infty} e^{-u} u^{(a+1)-1} d u \\
&=\frac{1}{S^{a+1}} \Gamma(a+1) \\
& \text { Thus } \mathcal{L}\left\{t^{a}\right]=\frac{\Gamma(a+1)}{S^{a+1}} \text { for all } a>-1 \\
& \text { If a is an integer, we have }
\end{aligned}
$$

For example, $\quad \alpha\{t\}=\frac{1}{s^{2}}$,

$$
\alpha\left\{t^{2}\right\}=\frac{2}{s^{3}}, \alpha\left\{t^{3}\right\}=\frac{3!}{s^{4}}, \cdots
$$

Note: $\int e^{2 x} \sin a x d x=\frac{1}{a^{2}+b^{2}}{ }^{b^{2 x}(b \sin \alpha x-a \cos \alpha x)}$
Example 3 Apply the definition in (2) to find the Laplace transform of the given function.

$$
f(t)=\cos k t
$$

ANs: $\alpha\{f(t)\}=\int_{0}^{\infty} e^{-s t} \cdot \cos k t d t$

Check the table of integrals $\int e^{e^{x x}} \cos a x d x=\frac{1}{a^{2}+b^{2}}{ }^{b^{2 x}(a \sin a x+b \cos a x)}$
Then $\int e^{-s t} \cdot \cos k t d t=\frac{1}{s^{2}+k^{2}} e^{-s t}(k \sin k t-s \cos k t)$
Then $\int_{0}^{\infty} e^{-s t} \cos k t d t=\left.\lim _{b \rightarrow \infty}\left[\frac{e^{-s t}(k \sin k t-s \cos k t)}{s^{2}+k^{2}}\right]\right|_{0} ^{b}$
So

$$
\mathcal{L}\{\cos k t\}=0-\frac{-s}{s^{2}+k^{2}}=\frac{s}{s^{2}+k^{2}} \quad(s>0)
$$

Another Method
Recall $e^{i k t}=\cos k t+i \sin k t$, then

$$
\begin{gathered}
\left.e^{-i k t}=\cos k t-i \sin k t\right] \\
\cos k t=\frac{e^{i k t}+e^{-i k t}}{2}, \sin k t=\frac{e^{i k t}-e^{-i k t}}{2 i} \\
\alpha\{\cos k t\}=\alpha\left\{\frac{e^{i k t}+e^{-i k t}}{2}\right\}=\frac{1}{2}\left(\alpha\left\{e^{i k t}\right\}+\mathcal{L}\left\{e^{-i k t}\right\}\right) \\
=\frac{1}{2}\left(\frac{1}{s-i k}+\frac{1}{s+i k}\right)=\frac{1}{2}\left(\frac{s+i k+s-i k}{s^{2}+k^{2}}\right)=\frac{s}{s^{2}+k^{2}}
\end{gathered}
$$

Example 4 Apply the definition in (2) to find directly the Laplace transform of the given function described by the graph.

ANS: From the graph,

$$
f(t)= \begin{cases}t, & 0 \leqslant t \leqslant 1 \\ 0, & t>1\end{cases}
$$

Thus

$$
\begin{aligned}
\mathcal{L}\{f(t)\} & =\int_{0}^{\infty} e^{-s t} \cdot f(t) d t=\int_{0}^{1} e^{-s t} \cdot t d t+\int_{1}^{\infty} e^{-s t} \cdot 0 d t \\
& =\int_{0}^{1} e^{-s t} \cdot t d t
\end{aligned}
$$

Note $\int t e^{-s t} d t \quad \int u d v=u v-\int v d u$
Thus

$$
=-\frac{1}{s} \int t d e^{-s t}
$$

$$
=-\frac{1}{s}\left[t e^{-s t}-\int e^{-s t} d t\right]
$$

$$
=-\frac{1}{s}\left[t e^{-s t}-\frac{1}{-s} \int e^{-s t} d(-s t)\right]
$$

$$
=-\frac{1}{s}\left[t e^{-s t}+\frac{1}{s} e^{-s t}\right]=-\frac{(s t+1) e^{-s t}}{s^{2}}=\frac{1-(s+1) e^{-s}}{s^{2}}
$$

Linearity of Transforms
Theorem 1. Linearity of the Laplace Transform
If a and b are constants, then

$$
\mathcal{L}\{a f(t)+b g(t)\}=a \mathcal{L}\{f(t)\}+b \mathcal{L}\{g(t)\}
$$

for all s such that the Laplace transforms of the functions f and g both exists.

Example 5 Use the transforms in Fig. 7.1.2 to find the Laplace transforms of the functions of the following problems.
(1) $f(t)=\sin 3 t+\cos 3 t$
(2) $f(t)=(1+t)^{2}$

ANS:
$f(t) \quad F(s)$
(1) $\mathcal{L}\{f(t)\}$
$f(t) \quad F(s)$
$=\alpha\{\sin 3 t+\cos 3 t\}$

1	$\frac{1}{s}$	$(s>0)$
t	$\frac{1}{s^{2}}$	$(s>0)$

$=\alpha\{\sin 3 t\}+\alpha\{\cos 3 t\}$
$=\frac{3}{s^{2}+9}+\frac{s}{s^{2}+9}$
$t^{n}(n \geqq 0) \quad \frac{n!}{s^{n+1}} \quad(s>0)$

$$
=\frac{3+s}{s^{2}+9} \quad(s>0)
$$

$e^{a t} \quad \frac{1}{s-a} \quad(s>a)$

$\cos k t$	$\frac{s}{s^{2}+k^{2}}$	$(s>0)$
$\sin k t$	$\frac{k}{s^{2}+k^{2}}$	$(s>0)$
$\cosh k t$	$\frac{s}{s^{2}-k^{2}}$	$(s>\|k\|)$

(2) $\alpha\left\{(1+t)^{2}\right\}$
$\sinh k t \quad \frac{k}{s^{2}-k^{2}} \quad(s>|k|)$

$$
=\alpha\{1\}+2 L\{t\}+\alpha\left\{t^{2}\right\}
$$

$u(t-a) \quad \frac{e^{-a s}}{s} \quad(s>0)$

$$
=\alpha\left\{1+2 t+t^{2}\right\}
$$

$$
=\frac{1}{S}+2 \cdot \frac{1}{s^{2}}+\frac{2!}{s^{2+1}}
$$

FIGURE 7.1.2. A short table of Laplace transforms.

$$
=\frac{1}{S}+\frac{2}{S^{2}}+\frac{2}{S^{3}} \quad(S>0)
$$

$$
\sin ^{2} x=\frac{1}{2}(1-\cos 2 x) \quad \cos ^{2} x=\frac{1}{2}(1+\cos 2 x)
$$

Example 6 Use the transforms in Fig. 7.1.2 to find the Laplace transforms of the functions of the following problem.

$$
f(t)=\cos ^{2} 3 t
$$

ANS: Note $\cos ^{2} 3 t=\frac{1}{2}(1+\cos 6 t)$

$$
\begin{aligned}
& \alpha\left\{\cos ^{2} 3 t\right\}=\alpha\left\{\frac{1}{2}(1+\cos 6 t)\right\}=\frac{1}{2}(\alpha\{1\}+\alpha\{\cos 6 t\}) \\
& =\frac{1}{2}\left(\frac{1}{s}+\frac{s}{s^{2}+36}\right)
\end{aligned}
$$

Inverse Transforms
Definition Inverse Transforms
If $F(s)=\mathcal{L}\{f(t)\}$, then we call $f(t)$ the inverse Laplace transform of $F(s)$ and write

$$
f(t)=\mathcal{L}^{-1}\{F(s)\}
$$

Example
Since $L\{t\}=\frac{1}{s^{2}}, \quad \mathcal{L}^{-1}\left\{\frac{1}{s^{2}}\right\}=t$.

$$
\mathcal{L}\left\{e^{a t}\right\}=\frac{1}{s-a}, \quad L^{-1}\left\{\frac{1}{s-a}\right\}=e^{a t} .
$$

Example 7 Use the transforms in Fig. 7.1.2 to find the inverse Laplace transforms of the given functions.
(i) $F(s)=\frac{3}{s+5}$
(ii) $F(s)=\frac{3}{s^{4}}$
(iii) $F(s)=\frac{3 s+1}{s^{2}+4}$
$f(t) \quad F(s)$
ANS:
(1)

$$
\begin{aligned}
& \alpha^{-1}\left\{\frac{3}{s+5}\right\} \\
= & 3 \alpha^{-1}\left\{\frac{1}{s+5}\right\} \\
= & 3 \alpha^{-1}\left\{\frac{1}{s-(-5)}\right\} \\
= & 3 e^{-s t}
\end{aligned}
$$

$t \quad \frac{1}{s^{2}} \quad(s>0)$

$t^{n}(n \geqq 0)$	$\frac{n!}{s^{n+1}}$	$(s>0)$
$t^{a}(a>-1)$	$\frac{\Gamma(a+1)}{s^{a+1}}$	$(s \neq 0)$
$e^{a t}$	$\frac{1}{s-a}$	$(s>a)$
$\cos k t$	$\frac{s}{s^{2}+k^{2}}$	$(s>0)$
$\sin k t$	$\frac{k}{s^{2}+k^{2}}$	$(s>0)$
$\cosh k t$	$\frac{s}{s^{2}-k^{2}}$	$(s>\|k\|)$

(2). $\mathcal{L}^{-1}\left\{\frac{3}{5^{4}}\right\}$

$\sinh k t \quad \frac{k}{s^{2}-k^{2}} \quad(s>|k|)=\frac{1}{2} t^{3}$
$\begin{array}{lll}u(t-a) & \frac{e^{-a s}}{s} & (s>0) \\ \text { FIGURE } 712\end{array} \mathcal{L}^{-1}\left\{\frac{3 s+1}{S^{2}+4}\right\}$
FIGURE 7.1.2. A short table of Laplace transforms.

$$
\begin{aligned}
& =\mathcal{L}^{-1}\left\{\frac{3 s}{s^{2}+2^{2}}\right\}+\frac{1}{2} \alpha^{-1}\left\{\frac{2}{s^{2}+2^{2}}\right\} \\
& =3 \cdot \cos 2 t+\frac{1}{2} \sin 2 t .
\end{aligned}
$$

