Chapter 7 Laplace Transform Methods

Introduction

Recall in Chapter 3; we talked about the method of solving the mass-spring-dashpot system

$$mx'' + cx' + kx = F(t)$$

In practice, the forcing term F(t) has discontinuities. In this case, the Laplace transform method is a prefered method to solve Eq (1).

The Laplace transformation \mathcal{L} can be viewed as an analogy of the differentiation operator D:

Figure: Transformation of a function: \mathcal{L} in analogy with D

Figure. Using the Laplace transform to solve an initial value problem

7.1 Laplace Transforms and Inverse Transforms

Definition The Laplace Transform

Given a function f(t) defined for all $t \ge 0$, the Laplace transform of f is the function F defined as follows:

$$F(s) = \mathcal{L}{f(t)} = \int_0^\infty e^{-st} f(t) dt$$

for all values of s for which the improper integral converges.

Recall that an improper integral over an infinite interval is defined as a limit of integrals over bounded intervals:

$$\int_a^\infty g(t)dt = \lim_{b o\infty}\int_a^b g(t)dt.$$

If the limit (2) exists, then we say that the improper integral **converges**; otherwise, it **diverges** or fails to exist.

Example 1 Apply the definition in (2) to find the Laplace transform of the given function.

ANS: By the def. above, the Laplace transform of fit, is

$$F(s) = \mathcal{L} \{f(t)\} = \int_{0}^{\infty} e^{-st} \cdot e^{3t+1} dt$$

$$= \int_{0}^{\infty} e^{-st} \cdot e^{3t} \cdot e dt$$

$$= e \int_{0}^{\infty} e^{-(s-3)t} dt$$
We compute $\int e^{-(s-3)t} dt$
Let $h = -(s-3)t$, then $du = (3-s)dt$
Thus $dt = \frac{1}{3-s} du$
So

 $\int e^{-(s-3)\tau} dt = \int e^{n} \frac{1}{3-s} dn = \frac{1}{3-s} \int e^{n} dn$ $=\frac{1}{3-c}e^{n} = \frac{1}{3-c}e^{-(s-3)t}$ Then $F(s) = \frac{e}{3-s} \left(e^{-(s-3)t} \right)^{\infty}$ $= \frac{e}{3-5} \lim_{b \to \infty} \left[e^{-(s-3)b} - e^{-(s-3)b} \right]$ If 5-3 >0, then e - (5-3)b ->0 as b -> 00 So $F(s) = \frac{e}{3-s} (0-1) = \frac{e}{s-3}$ for s > 3Note leat] = 1 (s > a) $= e \cdot \frac{1}{5-3} (5 > 3)$

Reading Material: Gamma function $\Gamma(x)$ and $\mathcal{L}\{t^a\}$

The Laplace transform $\mathcal{L}{t^a}$ of a power function is most conveniently expressed in terms of the **gamma** function $\Gamma(x)$, which is defined for x > 0 by the formula

$$\Gamma(x)=\int_{0}^{\infty}e^{-t}t^{x-1}dt$$

- $\Gamma(1) = 1$
- $\Gamma(x+1) = x\Gamma(x)$
- $\Gamma(n+1) = n!$

Example 2 Apply the definition in (2) to find the Laplace transform of the given function.

$$f(t) = t^{\alpha}, \text{ where } a \text{ real and } a > -1.$$
ANS: By def.

$$\int \frac{1}{3}t^{\alpha} = \int_{0}^{\infty} e^{-st} t^{\alpha} dt$$
Let $u = st$. Then $t = \frac{u}{s}$

$$du = sdt$$
. Then $dt = \frac{du}{s}$
Substitute these into the integral, we have

$$\int \frac{1}{5}t^{\alpha} = \int_{0}^{\infty} e^{-st} t^{\alpha} dt = \int_{0}^{\infty} e^{-u} \left(\frac{u}{s}\right)^{\alpha} \frac{du}{s} = \frac{1}{5^{\alpha+1}} \int_{0}^{\infty} e^{-u} u^{(\alpha+1)-1} du$$

$$= \frac{1}{5^{\alpha+1}} \int (\alpha+1)$$
Thus $\int \frac{1}{5^{\alpha}}t^{\alpha} = \frac{\Gamma(\alpha+1)}{s^{\alpha+1}} \text{ for all } \alpha > -1.$

$$\Gamma(x) = \int_{0}^{\infty} e^{-t}t^{x-1} dt$$
If α is an integer, we have

$$\int \frac{1}{5^{n+1}}t^{n} = \frac{\Gamma(n+1)}{5^{n+1}} = \frac{n!}{5^{n+1}} (s > 0)$$
For example, $\int \frac{1}{5^{n}}t^{n} = \frac{1}{5^{n}}, \quad \int \frac{1}{5^{n}}t^{n} = \frac{2}{5^{n}}, \quad \int t^{n} = \frac{3!}{5^{n}}$

· · · ·

Note:
$$\int e^{bx} \sin ax \quad dx = \frac{1}{a^2 + b^2} e^{bx} (b \sin ax - a \cos ax)$$

Example 3 Apply the definition in (2) to find the Laplace transform of the given function.

$$f(t) = \cos kt$$

$$AWS: \int \left\{ \int [H_{1}] \right\} = \int_{0}^{\infty} e^{-st} \cos kt \, dt$$

$$Check the table of integrals \int e^{tx} \cos ax \, dx = \frac{1}{a^{2} + b^{2}} e^{tx} (a \sin ax + b \cos ax)$$

$$Then \int e^{-st} \cos kt \, dt = \frac{1}{s^{2} + k^{2}} e^{-st} \left(k \sinh kt - s \cosh kt \right)$$

$$Then \int_{0}^{\infty} e^{-st} \cosh kt \, dt = \lim_{b \to \infty} \left[\frac{e^{-st} \left(k \sinh kt - s \cosh kt \right)}{s^{2} + k^{2}} \right]_{0}^{b}$$

$$So \int \left\{ \cos kt \right\} = 0 - \frac{-s}{s^{2} + k^{2}} = \frac{s}{s^{2} + k^{2}} (s > 0)$$

$$Another Method$$

$$Recall e^{-ikt} = \cos kt + i \sinh kt \left\{ f(t) + hen e^{-ikt} + e^{-ikt} = e^{-ikt} + e^{-ikt}$$

Example 4 Apply the definition in (2) to find directly the Laplace transform of the given function described by the graph.

for all s such that the Laplace transforms of the functions f and g both exists.

Example 5 Use the transforms in Fig. 7.1.2 to find the Laplace transforms of the functions of the following problems. have

$f(t) = \sin 3t + \cos 3t$			ANS:		
$f(t) = \sin 3t + \cos 3t$ $f(t) = (1+t)^2$			$(1) \text{L} \left\{ f(t) \right\}$		
f(t)	F(s)		= $2 \left\{ \text{subst} + \cos 3t \right\}$		
1	$\frac{1}{s}$	(s > 0)	= 2 ? sin st] + 2 ? cosst]		
t	$\frac{1}{s^2}$	(s > 0)	$=$ $\frac{3}{1}$ $+$ $\frac{5}{1}$		
$t^n (n \ge 0)$	$\frac{n!}{s^{n+1}}$	(s > 0)	579 579		
$t^{a} (a > -1)$	$\frac{\Gamma(a+1)}{s^{a+1}}$	(s > 0)	$= \frac{3+5}{5^2+9}$ (\$>0)		
eat	$\frac{1}{s-a}$	(s > a)			
$\cos kt$	$\frac{s}{s^2 + k^2}$	(s > 0)	(1) $L \{ (1+t)^{-} \}$		
sin k t	$\frac{k}{s^2 + k^2}$	(<i>s</i> > 0)	$= 2 i + 2t + t^{2}$		
$\cosh k t$	$\frac{s}{s^2 - k^2}$	(s > k)	$= 2 \frac{1}{1} \frac{1}{12} \frac{1}{12} + 2 \frac{1}{12} \frac{1}{12} + 2 \frac{1}{12} \frac{1}{12}$		
sinh k t	$\frac{k}{s^2 - k^2}$	(s > k)			
u(t-a)	$\frac{e^{-as}}{s}$	(<i>s</i> > 0)	$= 3 + 2 \cdot 5^{2} + \frac{2}{5^{2+1}}$		
FIGURE 7.1.2. A short table of Laplace transforms.			$= \frac{1}{5} + \frac{2}{5^2} + \frac{2}{5^3} [570]$		

 $\sin^{2} x = \frac{1}{2} (1 - \cos 2x)$ $\cos^{2} x = \frac{1}{2} (1 + \cos 2x)$

Example 6 Use the transforms in Fig. 7.1.2 to find the Laplace transforms of the functions of the following problem.

 $f(t) = \cos^2 3t$

ANS: Note
$$\cos^2 3t = \frac{1}{2} (1t \cos 6t)$$

 $\int \left\{ \cos^2 3t \right\} = \int \left\{ \frac{1}{2} (1t \cos 6t) \right\} = \frac{1}{2} \left(\frac{1}{2} 1 \right] + \int \left\{ \cos 6t^2 \right\}$
 $= \frac{1}{2} \left(\frac{1}{2} + \frac{5}{5736} \right)$

Inverse Transforms

Definition Inverse Transforms

If
$$F(s) = \mathcal{L}{f(t)}$$
, then we call $f(t)$ the inverse Laplace transform of $F(s)$ and write

$$f(t) = \mathcal{L}^{-1}\{F(s)\}$$

Example

Since
$$L_{1}^{2} = \frac{1}{5^{2}}, \quad L_{1}^{-1} = \frac{1}{5^{2}} = t.$$

 $L_{1}^{2} = \frac{1}{5^{2}}, \quad L_{1}^{-1} = e^{\alpha t}.$

Example 7 Use the transforms in Fig. 7.1.2 to find the inverse Laplace transforms of the given functions.

(i) $F(s)=\cdot$ (ii) $F(s)=$	$\frac{3}{s+5}$ $\frac{3}{4}$	ANS	$\begin{array}{c} 15:\\ 11) \\ 11) \\ 11 \\ 11 \\ 11 \\ 12 \\ 13 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15$
(iii) $F(s) =$	$\frac{s^4}{s^2+4}$		$= 3 L^{-1} \{ \frac{1}{5+5} \}$
f(t)	F(s	5)	$= 3 \int_{-1}^{-1} \frac{1}{(s-(-s))}$
1	$\frac{1}{s}$	(s > 0)	$= 3 e^{-st}$
t	$\frac{1}{s^2}$	(s > 0)	0
$t^n (n \ge 0)$	$\frac{n!}{s^{n+1}}$	(s > 0)	(2). $\int_{-1}^{-1} \frac{3}{5^4} \frac{3}{5^5} \frac{3}{5^$
$t^{a} (a > -1)$	$\frac{\Gamma(a+1)}{s^{a+1}}$	(s × 0)	= 3 2 - 17 = 2
e ^{at}	$\frac{1}{s-a}$	(s > a)	
$\cos kt$	$\frac{s}{s^2 + k^2}$	(s > 0)	$=3 \int_{-1}^{-1} \frac{5!}{5^{3+1}} \cdot \frac{3!}{3!}$
sin k t	$\frac{k}{s^2 + k^2}$	(s > 0)	$=\frac{3}{2!}$ 1^{-1} $\frac{3!}{2!}$ $\frac{7}{2!}$
$\cosh k t$	$\frac{s}{s^2 - k^2}$	(s > k)	3! ~ S ³⁺¹]
sinh k t	$\frac{k}{s^2 - k^2}$	(s > k)	$=\pm t^3$
u(t-a)	$\frac{e^{-as}}{s}$	(s > 0)	(3) $L^{-1} \left\{ \frac{3s+1}{s^2+4} \right\}$
FIGURE 7.1.2. A short table of Laplace transforms.		ole of	$= \mathcal{L}^{-1} \left\{ \frac{3s}{s^{2}+2^{2}} \right\} + \frac{1}{2} \mathcal{L}^{-1} \left\{ \frac{2}{s^{2}+2^{2}} \right\}$
			= 3. $\cos 2t + \frac{1}{2} \sin 2t$.